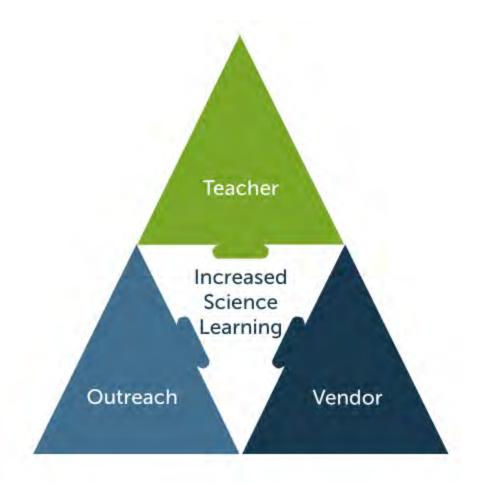
A Symbiotic Relationship in Science Education Teacher-Outreach-Supplier

Can you taste that? Extending beyond the PTC tasting strip

Why <u>invest</u> in lab science education?

<u>Doing</u> science early and often breaks down students' perceptions that science is hard

Building an engaging interactive learning environment builds student confidence


Lab focus teaching increases learning and test scores

Middle and low achieving students tend to participate more often when teachers show interest in their ability to gain these skills

Introducing the tools and techniques of science opens potential career opportunities

Utilizing partnerships with outreach and science vendors supplements your budget, time and skills.

A True Symbiotic Relationship

The true symbiotic relationship (notes)

Teacher- Gives-time, effort, and a real understanding of their constraints within the classroom. Shares their own best practices to other participating teachers

Gains-resources from other teachers, supplies, vetted real life curriculum and Biotech/lab skills with support. also connections for my students for future mentorships/internships/informational interviews/guest speakers/field trips. Access to more grants, administration support and potential of parent or rotary funders because these relationships shows commitment

Outreach – Gives time and effort, real lab skills, curriculum, sometimes equipment loaning, lab supplies, support for the teacher and a place/time for great teachers to collaborate with other great teachers

Gains data and proof of principal to apply to more grants, if higher education-the students that gain these skills (better prepared students) and work with key players that are changing administrations point of view towards the STEM classroom

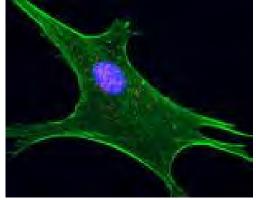
Vendor- Gives time and effort to understand the American classroom, innovated products that engage students and are robust to handle the learning of the beginning student, cost vs. outcome = effective learning.

Gains informed clients, ones willing to help with more innovation and future clients in the students that move into STEM jobs who know of the equipment and what works.

Can you taste that? Extending beyond PTC tasting paper

MiniLab- PTC PCR Simulation Kit


ABE-WA support for PTC PCR and Bioinformatics activity


Science Education Partnership- Fred Hutch-PTC PCR

<u>NEB</u>- For reagents-TaqOne, DNA Marker(100bp), loading dye

Carolina Kit

PCR - Important Concepts

Central Dogma

Nucleus - Contains DNA - the blue print for all genetic information

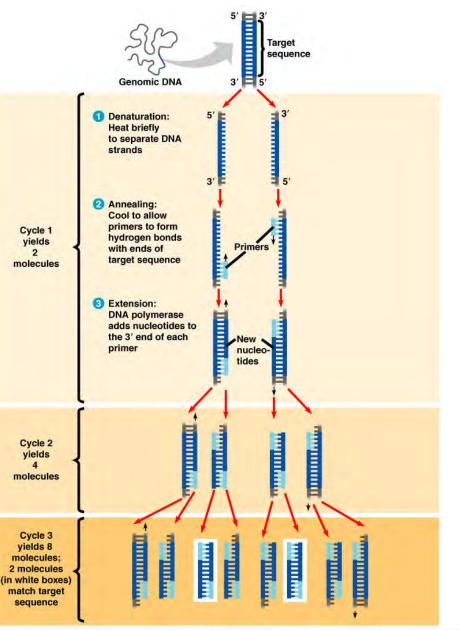
Chromosomes = much longer sequences of DNA that contain many genes

Genes = sequence of DNA that tells the cell how to make a single protein

Protein=A compound molecule made from a gene which coded the specific amino acids for a specific job.

DNA----RNA----Protein

Polymerase Chain Reaction - PCR

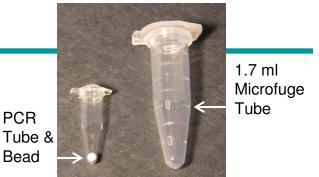

Major Breakthrough in the early 1980s

Kerry Mullis – 1993 Nobel Prize

Short stretches of DNA could be copied very quickly and easily – *DNA synthesis in a tube*

Applications

- -Forensics (CSI)
- -Evolutionary Relationships
- -Cloning (Jurassic Park)
- Genetic Testing

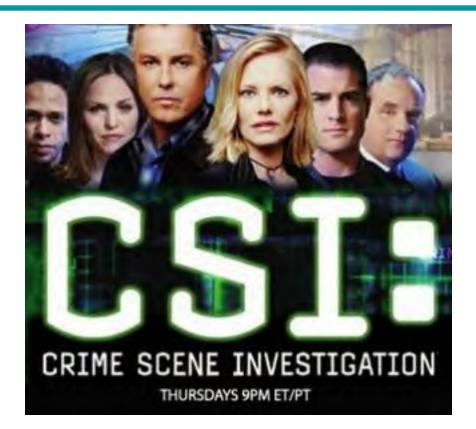

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

The Power of PCR

Number of PCR Cycles (n)	Copies of DNA (2n)
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
20	1,048,576
30	1,072,741,824

PCR Ingredients

1. DNA "template"


Your purified DNA sample Heat-stable DNA polymerase

- 2. *Taq* Polymerase
- 3. Deoxynucleotides (dNTPs)

Building blocks of DNA

- 4. Primers Small pieces of DNA bind to your gene
- 5. Buffer and water *Maintain pH of reaction*

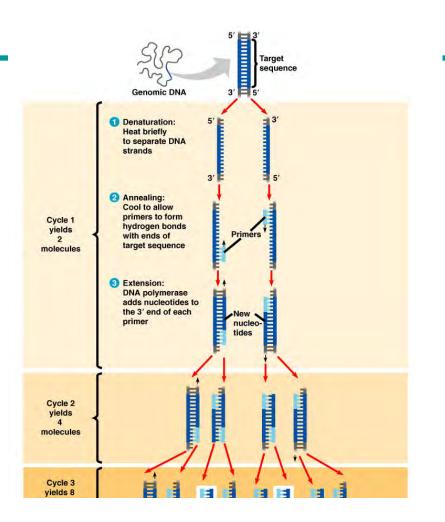
What is PCR and What it is Not?

http://www.youtube.com/watch?v=6iFDphWXjw4

1. Source of DNA – template

2.Ingredients (DNA polymerase, dNTPs, buffer, Taq)

3. An understanding of the target DNA sequence to design primers


4. Thermocycler

5. Method to visualize DNA and see differences.

PCR – First Cycle

3 Steps

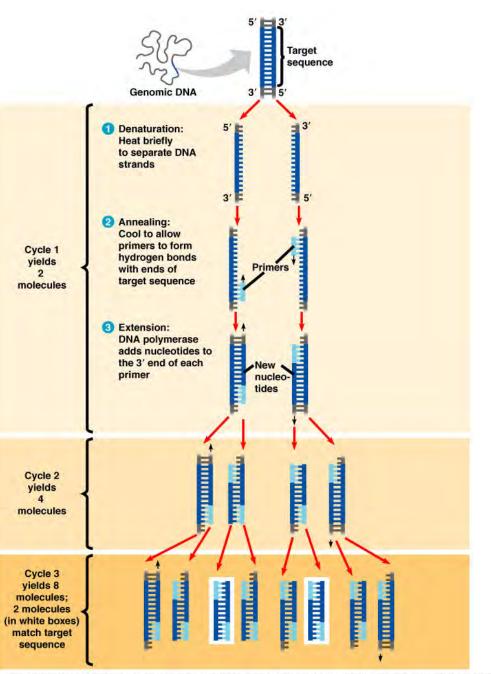
- 1) Denature template DNA – 94 degrees
- 2) Anneal Primer binds to complimentary site 45-72 degrees
- 3) Extension Taq polymerase synthesizes new strand – 68-72 degrees
- 4) Return to denature

Breakthrough - Taq Polymerase Was the Key

 Taq DNA polymerase was isolated from the bacterium Thermus aquaticus.

Taq polymerase is stable at the high temperatures (~95°C) used for denaturing DNA.

Now researchers could add DNA polymerase once and it would work for 30 cycles


More cycles = more

DNA

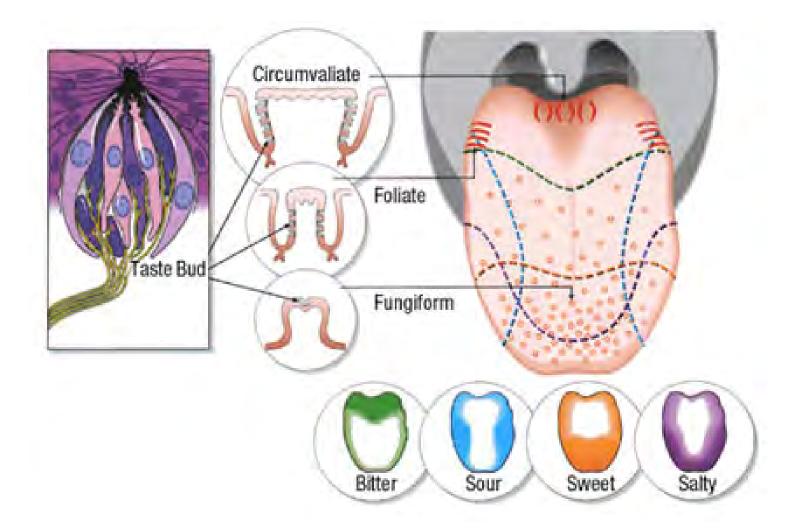
Each cycle DOUBLES the amount of target DNA

Cycle 3 is the first cycle where a double stranded molecule is produced that is the EXACT size of the target DNA

TARGET DNA IS DEFINED BY THE DISTANCE BETWEEN TWO PRIMERS

pyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved

- 1) <u>http://www.dnalc.org/ddnalc/resources/pcr.html</u>
- 2) <u>http://www.sumanasinc.com/webcontent/anisamples/molecularbiolog</u> <u>y/pcr.html</u>
- 3) <u>http://www.youtube.com/watch?v=x5yPkxCLads</u>
- 4) <u>http://www.hhmi.org/biointeractive/polymerase-chain-reaction-pcr</u>


Analyzing the PTC Taster Gene (tas2r38) through PCR Amplification ABE-WA PCR Lab

The human taste process

- Food is recognized by a taste receptor where the protein binds to the receptor most closely related to the 5 tastes: Sweet, Bitter, Sour, Salty, and Umami
- The shapes of the protein closely matches the shape of the related receptor.
- The receptor sends a nerve impulse to your brain which interprets it as one of those tastes.
- The receptors, neuron messages and interpretation are all determined by your genetics, though can be altered by environment or injury.

The human taste process

Bitter Tasting Chemical PTC

(Phenylthiocarbamide)

- Arther Fox in the late 20's used this chemical in a lab at DuPont.
- His colleague complained that he could taste the chemical in the air, but Fox was not experiencing the same taste sensation.
- This was tested with many co-workers and friends and genetics was thought to play a role.
- It is said that paternity was even tested by this early on.

Bitter Tasting Chemical PTC

• Albert Blakeslee, in 1932, determined that the ability to taste this chemical must be a dominant trait when most test subjects could taste the chemical.*

*In 2004, the gene responsible was located on chromosome 7. We get one allele from our mother and one from our father.

Protocol for PTC PCR - Overview

- Day 1: Isolating your DNA Extract your own DNA using Chelex
- Day 2: Performing PCR Use Polymerase Chain Reaction (PCR) to amplify a portion of your own *TAS2R38* gene
- Day 3: Restriction Digest of PCR Product Use a restriction enzyme to potentially cut your *TAS2R38* genes
- Day 4: Run Product Samples on Gel to Analyze Results Use gel electrophoresis to separate any fragments produced by the restriction enzyme activity

Protocol for Today: Analyzing Student results

- You should have 6 samples: DNA Marker, PTC PCR Product Uncut, Student 1, Student 2, Student 3 and Student 4 (Cut with Restriction Digest)
- Your gel box should have TBE buffer in the tank and a gel. The carriage should be plugged in. You shouldn't move the carriage after loading samples.
- Set your pipette to 12ul and make sure a tip is on the barrel of the pipette
- Pipette each sample into a well. Change tip each time you pipette a new sample.
- When samples are added place the orange viewing box on the top of unit with it in the correct position and push run.
- Make sure samples are running by turning on LED light.
- Results should be determined after about 25 mins. Check to see that the marker is spread out and you can determine the samples results. If necessary run another 5 minutes.

The gene is called TAST2R38

- The gene is just over 1000bp in length
- There are three areas of variance that causes the taster/nontaster forms or 3 SNPS-Single Nucleotide polymorphism.

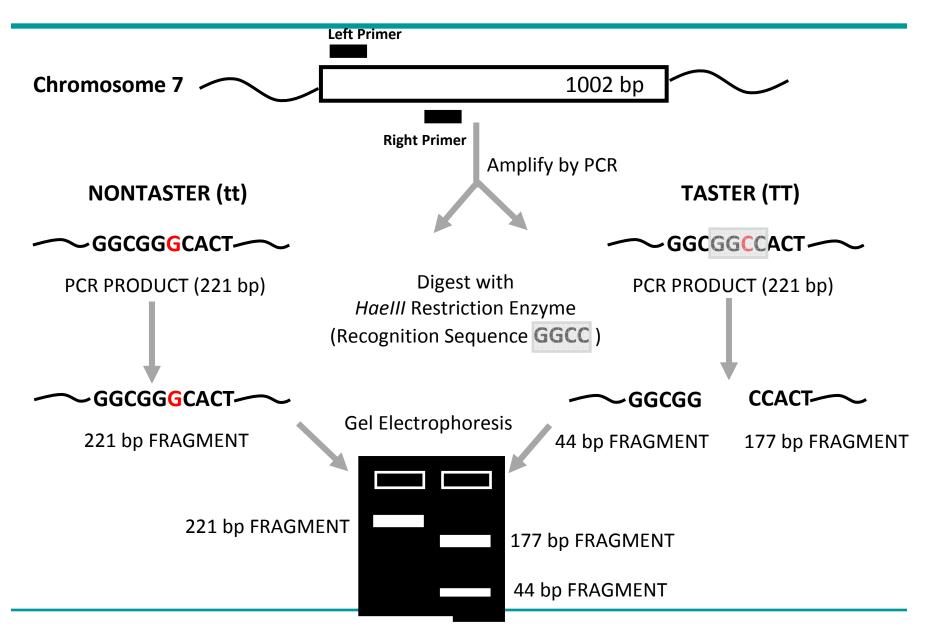
Postition	Taster	Nontaster
145	C (proline)	G (alanine)
785	C (alanine)	T (valine)
886	G (valine)	A (isoleucine)

Amplifying TAST2R38 with PCR

*Primers used in the experiment:

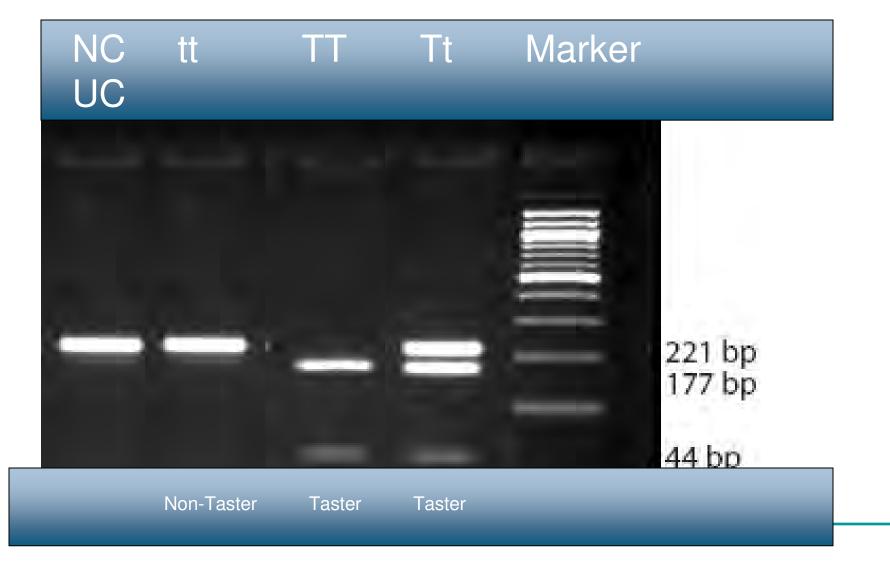
CCTTCGTTTTCTTGGTGAATTTTTGGGATGTAGTGAAGAGGCGG AGGTTGGCTTGGTTTGCAATCATC

- If PCR was done correctly, everyone will have a very large amount of 221 bp PCR product
- To predict the alleles, you have to separate the dominant from recessive
- This is where the 145 SNP comes in


Predicting Alleles and Trait

*Using HAEiii enzyme, a restriction digest can be done at this SNP

*HAEiii restriction site is GGCC


- The pcr product that has GGCC will be cut into two pieces
- The pcr product that has GGGC will not cut
- Those that are heterozygous will have a mixture of both. Some product with GGCC and some product with GGGC

TAS2R38 Bitter Taste Receptor ["PTC"] Gene

Visualization of DNA results

using gel electrophoresis

10 Minute Break

Using BLAST to Compare DNA and Protein Sequences

BLAST is One of the Most-Used Programs in Biology Today

- Determine probability two sequences share a common ancestor
- Determine where sequences match one another
- View relationship between mRNA and genomic DNA (ex: exons versus introns)
- Design and test PCR primers
- Distinguish or identify different species (ex: unknown samples, contamination)
- Build phylogenetic trees or cladograms

<u>Basic Local Alignment Search Tool</u>

S	BLAST [®] Home Recent	Bas Results Saved Strategies Help	ic Local Alignment Search Tool		My NCBI 2 [Sign In] [Register]
► NC	BI/ BLAST Home BLAST finds regio	ns of similarity between biological sec New DELTA-BLA	uences. <u>more</u> ST, a more sensitive protein-protein se	earch 💿	Your Recent Results New!
		bled RefSeq Genomes enome to search, or <u>list all genomic BL</u>	ST databases.		News Custom BLAST databases
	 <u>Human</u> <u>Mouse</u> <u>Rat</u> <u>Cow</u> <u>Pig</u> 	 <u>Dog</u> <u>Rabbit</u> <u>Chimp</u> <u>Guinea pig</u> <u>Sheep</u> 	 Fruit fly Honey bee Chicken Zebrafish Clawed frog 	 <u>Arabidopsis</u> <u>Rice</u> <u>Yeast</u> <u>Neurospora crassa</u> <u>Microbes</u> 	Create custom BLAST databases with entrez. Mon, 14 Apr 2014 08:00:00 EST More BLAST news
	Basic BLAST Choose a BLAST pr	ogram to run.			Tip of the Day
	nucleotide blast	Search a nucleotide database using a <i>Algorithms:</i> blastn, megablast, disc			
	<u>protein blast</u>	Search protein database using a prote i <i>Algorithms:</i> blastp, psi-blast, phi-bla			
	blastx	Search protein database using a transl	ated nucleotide query		
	<u>tblastn</u>	Search translated nucleotide database	e using a protein query		
	<u>tblastx</u>	Search translated nucleotide database	e using a translated nucleotide query		

http://blast.ncbi.nlm.nih.gov/Blast.cgi

A Tool for Comparing Sequences

Compare Two or More Sequences to One Another

19893 1 60 Query 61 ACTCATGTTGTTATGAAAACAGATGCTGAGTTTGTGTGTG			ne Selected:0	
Father BRCA1 DNA Sequence ments gesp 1 GTGTACAAGTTTGCCAGAAAACACCACATCACTTTAACTAATCTAATTACTGAAGAGACT 60 gesp 3 GAGTCATGTTGTTATGAAAACAGATGCTGAGTTTGTGTGTG	1 Align	ment	s 📳 Download 🖂 <u>Graphics</u>	
ments Nuery 1 GTGTACAAGTTTGCCAGAAAACACCACATCACTTTAACTAATCTAATTACTGAAGAGACT 60 9893 1			Description	
Juery 1 GTGTACAAGTTTGCCAGAAAACACCCACATCACTTTAACTAATCTAATTACTGAAGAGAGT 60 Juery 61 ACTCATGTTGTTATGAAAACAGATGCTGAGTTTGTGTGTG	E Fat	her BR	CA1 DNA Sequence	
Juery 1 GTGTACAAGTTTGCCAGAAAACACCCACATCACTTTAACTAATCTAATTACTGAAGAGAGT 60 Juery 61 ACTCATGTTGTTATGAAAACAGATGCTGAGTTTGTGTGTG				
Juery 1 GTGTACAAGTTTGCCAGAAAACACCCACATCACTTTAACTAATCTAATTACTGAAGAGAGT 60 Juery 61 ACTCATGTTGTTATGAAAACAGATGCTGAGTTTGTGTGTG				
9893 61 60 uery 61 ACTCATGTTGTTATGAAAACAGATGCTGAGTTTGTGTGTG	ments	5		
9893 61 60 yuery 61 ACTCATGTTGTTATGAAAACAGATGCTGAGTTTGTGTGTG				
9893 61 60 uery 61 ACTCATGTTGTTATGAAAACAGATGCTGAGTTTGTGTGTG				
9893 61 12 uery 121 CTAGGAATTGCGGGGGGGGGAGGAAAATGGGTAGCTAGCT			GTGTACAAGTTTGCCAGAAAACACCACATCACTTTAACTAATCTAATTACTGAAGAGACT	60 60
9893 121 18 uery 181 GAAAGAAAAATGCTGAATGAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATGGAAGA 24 9893 181 24 uery 241 24 9893 241 30 uery 301 GAAATCTGTTGCTATGGGCCCTTCACCAAGAGAATGCCCAAGAGACAATGGAATGGAATGGAATGGAA 9893 301 GAAATCTGTTGCTATGGGCCCTTCACCAACATGCCCAAGAGACAATGGAATGGAATGGAATGGAA 9893 301 CAGCTGTGTGGTGGTGCTTCTGTGGTGAAGGAGGCTTTCATCATCACCCTTGGCACAGGGTGCT 9893 361 CAGCTGTGTGGTGCTGTGGCAGCCAGATGCCTGGACAGAGGACAATGGCTTCCATGCAAGT 9893 421 42 uery 421 48 uery 481 GGGCAGATGTGTGAGGGCACCTGTGGTGACCCGAGATGGGGTGTTGGACAGTGTAGCACCC 54			ACTCATGTTGTTATGAAAACAGATGCTGAGTTTGTGTGTG	120 120
9893 181 24 uery 241 AACCACCAAGGTCCAAAGCGAGCAAGAGAATCCCAGGACAGAAAGATCTTCAGGGGGGCTA 30 9893 241 30 30 uery 301 GAAATCTGTTGCTATGGGCCCTTCACCAACATGCCCACAGATCAACTGGAATGGATGG			CTAGGAATTGCGGGAGGAAAATGGGTAGTTAGCTATTTCTGGGTGACCCAGTCTATTAAA	180 180
9893 241 30 uery 301 GAAATCTGTTGCTATGGGCCCTTCACCAACATGCCCACGATCAACTGGAATGGATGG			GAAAGAAAAATGCTGAATGAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATGGAAGA	240 240
9893 301 36 uery 361 CAGCTGTGTGGTGGTGCTTCTGTGGTGAAGGAGCTTTCATCATCACCCTTGGCACAGGGTGTC 42 9893 361 42 uery 421 42 uery 481 GGGCAGATGTGTGAGGGCACCTGTGGTGACCCGAGAGGGGGTGTTGGACAGTGTAGCACTC 54	uery 9893		AACCACCAAGGTCCAAAGCGAGCAAGAAATCCCAGGACAGAAAGATCTTCAGGGGGGCTA	300 300
9893 361 42 uery 421 CACCCAATTGTGGTTGTGCAGCCAGATGCCTGGACAGAGGACAATGGCTTCCATGCAATT 48 9893 421 48 uery 481 GGGCAGATGTGTGAGGCACCTGTGGTGACCCGAGAGTGGGGTGTTGGACAGTGTAGCACTC 54	uery 9893		GAAATCTGTTGCTATGGGCCCTTCACCAACATGCCCACAGATCAACTGGATGGA	360 360
9893 421 48 uery 481 GGGCAGATGTGTGAGGCACCTGTGGTGACCCGAGAGTGGGGTGTTGGACAGTGTAGCACTC 54	uery 9893		CAGCTGTGTGGTGCTCTGTGGTGAAGGAGCTTTCATCATCACCCTTGGCACAGGTGTC	420 420
	uery		CACCCAATTGTGGTTGTGCAGCCAGATGCCTGGACAGAGGACAATGGCTTCCATGCAATT	480 480
	5050			540

Compare a Sequence "Query" to an NCBI Database

	-					_
AST Space Local A Ignimon (Space) The						Mynes
ren Vedert Versits Street Sciencies, Melo						(Sen h)
our search is (insted to records installing entres quary, all (hitter) NO1 (homo septens)	CINCND:					
and Resubmit Save Search Strategies Formal ingloptions Dol/Host >						
e otide Sequence (1542 letters)						
		-				
Query 10 (c) 12229 Description flore		seription all	GonBank +8MBL+6	0514705 101	success (but	
tolecule type inudicia add		65	S.environmental :	samples or pl		
uery Length 1542		Program SU	GTN 2.2.23+ Otto	an'		
Ner reporta: <u>Beardi Summery (Texonomy reporta) (Distance tree of resulta)</u>						
aphic summary						
Distribution of 100 Bitst Hitso	a the Query	le quien ce sa				
Nouse over to see the celline, click to show all						
Caler key te						
	50-80		>=200			
Query		_				
0 300 600	90	0 12	00 1500	5		
				6		
				6		
scriptions						
and for links to other resources. United as 50 the Struttere Machiner 🛄						
Sequences producing significant alignments:		_	_			
Accession Description	Max.	Total_	201817	- 100	Max	Linke
222247.1 Gortle gortle mitocrionofiel DNA, complete genome	2792	2792	100%	0.0	100%	
000114.1 Goria goria mitochondral OliA, comiate ganome						
	2772	2772	100%	0.0	99%	
SU095226_1 Goria goria mitopronditor, partial genome	2772	2715	100%	2.0	99%	
SU252221 Gorlla porla mitochonoron, partial garome ACI902221 Pan trogodytes chromosome 7 clore CH251-075510, complete sequence	2773 2713 2142	2715 2187	100%	0.0 0.0	99%	
BU025224.1 Goria goria mitochon, partal genome 20100222.1 Pan trogodytes chromosome 7 clone G4251-375510, complete sequence 2022222.2 Pan trogodytes chromosome 7 clone G4251-320514 from chromosome 7, complete sequence	2773 2715 2142 re2157	2715 2187 2187	100% 99% 99%	0.0 0.0 0.0	99% 92% 92%	
BL025221 Goria potia metochandron, partial parome Activitzza i Pan trogodytes priomosome 7 clone CH251-075510, complete sequence	2773 2713 2147 no2157 2129	2715 2187	100%	0.0 0.0	99%	

Terminology

• Query Sequence:

- Same root as "question"
- Sometimes called a "reference sequence"
- the sequence to which other sequences are compared
- independent or control variable.
- Subject Sequence:
 - the sequence being compared
 - dependent or experimental variable
- BLAST Scores
 - Max Score, Total Score
 - Query Coverage
 - Percent Identity

Different Types of BLAST Searches

- **blastn**: Compares Nucleotide sequences
- **blastp**: Compares Protein sequences
- **blastx**: Translates a Nucleotide sequences into all 6 reading frames, searches against Protein database
- **tblast**: Compares a Protein sequence to the translated Nucleotide database
- **tblastx**: Translates both the Nucleotide query and the Nucleotide database, then compares

Available Genomes & Databases

CBI/ BLAST/ blastn suit	Standard	d Nucleotide BLAS
lastn <u>blastp blastx</u> Enter Query Sequ	Genomic plus Transcript Human genomic plus transcript (Human G+T) Mouse genomic plus transcript (Mouse G+T)	ide databases using a nu
Enter accession num	Nucleotide collection (nr/nt)	ery subrange 😡
Or, upload file Job Title	Reference RNA sequences (refseq_rna) Reference genomic sequences (refseq_genomic) RefSeq Representative genomes (refseq_representative_genomes) NCBI Genomes (chromosome) Expressed sequence tags (est) Genomic survey sequences (gss) High throughput genomic sequences (HTGS) Patent sequences(pat) Protein Data Bank (pdb) Human ALU repeat elements (alu_repeats) Sequence tagged sites (dbsts)	
Align two or more Choose Search S	Whole-genome shotgun contigs (wgs) Transcriptome Shotgun Assembly (TSA)	
GHOUSE Search a	16S ribosomal RNA sequences (Bacteria and Archaea)	
Database		

How to BLAST

Comparing Two or More Sequences to One Another

ICBV BLAST/ blastn a	suite	Align Sequences Nucleotide BLAST
plastn blastp b	tastx tolastn tolastx	
Enter Query S	equence	BLASTN programs search nucleofide subjects using a nucleofide query more.
Enter accession	number(s), gi(s), or FASTA sequence(s) 😐 🛛 🗠	Qaxy subringe (i) From To
Or, upload file Job Title	Browse. No file selected.	
Enter Subject		
Enter accession	number(s), gi(s), or FASTA sequence(s)	Subject subiange W From To
	browse_ No the selected.	
Program Selec	ction	
Optimize for	Highly similar sequences (megablast) More dissimilar sequences (discontiguous megablast) Somewhat similar sequences (blastin) Choole a BLAST algorithm (a)	
	Search nucleotide sequence using Megablast (Optimize for	

Compare a Sequence "Query" to an NCBI Database

S BLAST	and the second second	Basic Local Aligi	nment Search Tool	
Home Recent	Results Saved Strategies H	leip		
NCBI/ BLAST/ blastn suit	te			
blastn <u>blastp</u> bla	stx tblastn tblastx			
Entor Ouony Co	0100000	BLASTN pro	grams search nucleotic	le databases using a nucleotic
Enter Query Se				
Enter accession nur	nber, gi, or FASTA sequence 🎯		Clear	Query subrange 😡
AIGCOGGCA			<u></u>	From
				To
			w.	101
Or, upload file	Press	- 1-	_	
Job Title	Brows	se 0		
JOD HILE				
	Enter a descriptive title for your BLAST	search 😡		
Align two or mo	re sequences 🥹			
Choose Search	1 Set			
Database	C Human genomic + transcript	Mouse genomic	+ transcript	(nr.etc.)
	Nucleotide collection (nr/nt)			. (5.5.7.
Organism F	Genomic plus Transcript	· · · · · ·		-
Optional	Human genomic plus transcript		Exclude	
	Mouse genomic plus transcript Other Databases	(Wouse G+1)	op taxa will be shown	ı. 🥹
Exclude	Nucleotide collection (nr/nt)		e sequences	
Entrez Query	Reference mRNA sequences (r Reference genomic sequences		-	
Optional	NCBI Genomes (chromosome)			
	Expressed sequence tags (est) Non-human, non-mouse ESTs			
Program Selec	Genomic survey sequences (gs	s)		
Optimize for	 High throughput genomic seque Patent sequences(pat) 	ences (HTGS)		
opunice Ioi	Protein Data Bank (pdb)			
	Human ALU repeat elements (a	lu_repeats)	it)	
	Sequence tagged sites (dbsts) Whole-genome shotgun reads (wqs)		
	Environmental samples (env_nt			

Sample Results

	Query	<40 40	50 -56-80					
				80-200	>=200			
		0 300	600 5	900 12	00 150			
iptions								
Intions for insis to other resources	• 1]• aso d=•	Son Gre Nag <mark>Bener</mark>						
for links to other netources	icant alignments:		-					
for links to other resources aquences producing sig Accession	icant alignments:	Sin Cire Nac	Mas.	Intelligence	2045C. 2045C.		Sa.	Links
Torinis to other resources equences producing sig Accession (322-7.) Gotte port	icant alignmenta: Deac oria mitochordrai Divi	cription A. complete genome	Mas. 2003 2004	2762	100%	0.0	100%	Lines
Tor Initia to other netources equences producing sig Accession 2022-7.1 Goria port 2021-7.1 Goria port	icant alignmenta: Deac	ofisition A. complete genome nate genome	Mas.					Links

Pairwise Comparisons & Default Alignment Format

> emk Length		47.11 🖸 Gorilla gorilla gorilla mitochondrial DNA. complete ge	enome
Ident		2 bits (3084), Expect = 0.0 = 1542/1542 (100%), Gaps = 0/1542 (0%) /Plus	
Query	1	ATGTTCACCGACCGCTGATTATTCTCTACAAACCATAAAGATATTGGAACACTATATCTA	60
Sbjct	5326	ATGTTCACCGACCGCTGATTATTCTCTACAAACCATAAAGATATTGGAACACTATATCTA	5385
Query	61	CTATTCGGCGCATGAGCTGGAGTCCTAGGCACAGCCCTAAGTCTCCTTATTCGAGCAGAA	120
Sbjct	5386	CTATTCGGCGCATGAGCTGGAGTCCTAGGCACAGCCCTAAGTCTCCTTATTCGAGCAGAA	5445
Query	121	CTTGGTCAACCAGGCAACCTTCTAGGTAACGATCACATCTATAATGTTATCGTCACAGCC	180

Reformatting Results Permits Custom Views

		matting Results - RZM06UFG11N	[Sign In] [Regis
			Blast report description
Edit and Resubmit	Save Search Strat	egies Ventiling options. Step 11 You Tube How to read this page	Blast report description
Eur and roodoning			
		Formatting options Refor	Step 13
	Show	Alignment as HTML Old View Reset form to defaults	0
Step 12	Alignment View	Query-anchored with dots for identities	
	Display	Graphical Overview Sequence Retrieval CNCBI-gi	
	Masking	Character: Lower Case Color: Grey	9
	Limit results	Descriptions: 100 🗴 Graphical overview: 100 🖌 Alignments: 100 🖌 Line length: 60 💌	
		Expect Min: Expect Max:	
		Percent Identity Min: Percent Identity Max:	0
		Blast 2 sequences	
BRCA1_Reference	DNA_Seque	nce (600 letters)	

Query-Anchored with Dots for Identities

Alignments

Query 19247 19247 19248 19249 19249 19250 19250 19251	1 821 1 4 78 13 252 13	ATGTTCGCCGACCGCTGACTATTCTCTACAAACCACAAAGATATTGGAACACTATACCTA GGGGGG	60 60 812 60 44 70 60 255 60
Query 19247 19248 19248 19249 19249 19250 19250 19251	61 61 371 45 69 61 256 61	CTATTCGGCGCATGAGCTGGAGTCCTGGGCACAGCCCTAAGTCTCCTTATTCGGGCTGAA T.G. A.A. T.G. T.A.A. T.T.T. AC.G.A.T.T. T.T.T. A.A. T.T.T. A.A. T.G. A.G.CAG.A.A.	120 120 379 104 69 120 266 120
Query 19247 19248 19248 19249 19250 19250 19251 19251	121 121 380 105 121 440 121 744	CTAGGCCAACCAGGCAACCTTCTAGGTAATGACCACATCTACAATGTCATCGTCACAGCC .T.T.TCC.T.T.T.T. .G.T.T.T.T.T.GT.C.T.T.T.T. .C.A.C.C.T.T.C.T.T.A.G. T.A .C.T.G.GT.AA.AAG.C.TG.T.T.A.A.T.CT.T	180 180 380 164 180 426 180 744
Query 19247 19247 19247 19248 19248 19248 19249 19249	181 181 751 1396 181 751 165 1147	CATGCATTCGTAATAATCTTCTTCATAGTAATGCCTATTATAATCGGAGGCTTTGGCAAC GC.CAT TAAT.TT GCC.CACAT. GCC.CACAT. GCTT.G.T.A.C.CTT.C.A	240 240 775 1420 240 775 224 1163

BLAST Scores: Defined

Sequences producing significant alignments:						
Select: All None Selected:0						
🕻 Alignments 🖥 Download 🗠 <u>Graphics</u>						0
Description	Max score	Total score	Query cover	E value	Ident	Accession
Demon-YFP	1275	1275	100%	0.0	99%	59081

- Max Score / Total Score: Algorithm specific
- **Query Coverage**: What % of the query and subject sequence match?
- **Percent Identity**: How well does the covered region match?
- E or **Expect Value**: What is the probability that the match is by chance?

BLAST Scores: Example

Sequences producing significant alignments:

 Select: All None Selected:0

 If Alignments Download Scraphics

 Description
 Max score
 Total score
 Query cover
 E value
 Ident
 Accession

 Description
 1275
 1275
 100%
 0.0
 99%
 59081

30% Query Coverage, 100% Identity

100% Query Coverage, 50% Identity

3/10 bases (30%) match perfectly (100%)

All 10 bases (100%) align,

but only 5/10 (50%) match

ATG**GAT**ACGT

TGA**GAT**GATC

 $\underline{\boldsymbol{A}} T \underline{\boldsymbol{G}} C \underline{\boldsymbol{C}} G \underline{\boldsymbol{A}} T T \underline{\boldsymbol{G}}$

AG**G**G**C**A**A**CA**G**

Predicting PTC tasting of non-human primates

Resources- Bioteach Outreach Support

- <u>Shoreline Community College-Biotechnology Outreach</u>
- <u>Amgen Biotechnology Experience</u>
- <u>Science Education Partnership- Fred Hutch</u>
- <u>Genome Sciences Education Outreach</u>
- Institute of System Biology <u>Baliga Lab- Systems</u>
 <u>Education Experiences</u>
 Logan Center
- <u>Center for Infectious Disease</u>
- Northwest Association of Biotechnology Research
- Digital World Biology
- <u>NOAA Fisheries</u> and <u>Seattle Aquarium</u>
- <u>LASER</u> Leadership and Assistance for Science Education Reform
- Washington Alliance for Better schools
- Washington STEM
- Pacific Science Center-Middle

- International Arctic Research Center
- Reed College Science Outreach
- Bay Area Biotechnology Education Consortium-BABEC
- MassBioEd
 - PTC PCR
- ASHG-American Society of Human Genetics
 - Model PCR- paper model

Resources- Equipment, supplies and labs

- <u>MiniOne by Embi Tec</u> Pauline Cheng
- <u>New England Biolabs (NEB) Reagent support</u>
- BioRad Damon Tighe
- <u>Biotium</u>
- <u>Phenix</u>
- <u>Carolina</u>
- Edvotek

How to get involved? What if there is no outreach in your area?

<u>Travel if you can</u> ABE-WA will support teachers as much as possible We are looking at webinars as a way to reach others

Reach out to your community colleges and universities Many have grant deliverables that require community outreach. Many do not have a lot of time, but willing. Maybe it is just space for you to run a science collaboration meeting

Online resources

How can we help you vet the internet? What's Tried and True?