

MiniOne MiniLabs Overview & Alignment with HKDSE Biology Syllabus

- Series of hands-on labs ranging from basic biotech skills (for junior levels) to challenging AP and college-level investigations (for senior levels)
- Real-world applications: forensics, DNA fingerprinting, and human genetics, epidemiology
- Use as a complete curriculum or throughout the year to enhance your lessons.
- Add an inquiry-based and visually engaging connection to modern biotechnology

M3001 Electrophoresis 101 MiniLab

M3002 Gel Loading Practice MiniLab

M3003 PTC Genetics MiniLab

M3004 DNA Fingerprinting MiniLab

M3005 CSI Forensic MiniLab

M3006 Foodborne Outbreak Investigation MiniLab

M3007 Colourful Dye Electrophoresis MiniLab

M3009 Candy Colour Electrophoresis MiniLab

M3010 Hungting the Inheriteance of Huntington;s Disease MiniLab

M3011 Determining the Genetics of a Ca\$h Cow MiniLab

M3012 PTC Inheritance and Graphical Analysis MiniLab

M3013 The Dilution Solution MiniLab

M3014 Taking Macromolecules to Micro!

DNA M3015 DNA Extraction Toolbox

M3016 What's in the Trunk? An Elephant Ivory Expedition

M3017 Pipette Pointillism

M3018 Molecular Ladder to Freedom – DNA Exoneration MiniLab

Viral DNA Target

Molecular Masterpieces: Crafting Genetics with CRISPR MiniLab

M3020 The Fungus Among Us: Valley Fever MiniLab

M3021 Urine Trouble! MiniLab

M3022 Show Me the Moo-ney! MiniLab

M3050 Sickle Cell MiniLab

M3051 Hypercholesterolemia MiniLab

M3053 Analyzing a Crime Scene with DNA Reagent Pack

M3054 BRCA Chronicles: Breast Cancer Genetics MiniLab

M6001

PCR 101 and Gel Electrophoresis MiniLab

M6010 A Taste of Genetics MiniLab

M6030

Who Has The Flu? Tracing Transmission with ELISA and PCR MiniLab

M6050

M6300

Restriction Digest Basics MiniLab

Let it Glow™ Bacterial Transformation MiniLab

M3001: Electrophoresis 101 MiniLab

Fundamentals of DNA analysis

- Develop an understanding of the principles of gel electrophoresis
- Observe the migration of color dyes and DNA samples
- Plot a standard curve on semi-log graph paper
- Calculate the sizes of unknown molecules from given information and experimental data
- Lab Techniques involved: Pipetting, Gel Electrophoresis, Graph Drawing

mini ene «

M3002: Practice Pipetting and Gel Loading

Master the most important skill

Materials included:

- 20 practice pipetting cards
- 20 practice gels
- Two practice dyes (red & blue)
- Pipette tips
- Microcentrifuge tubes
- Mastering the use of an adjustable volume micropipette is the key to delivering accurate and reproducible results in biotechnology works
- Target-practice cards reinforce the method of volume adjustment and precision measurement
- Agar gels give the feel of loading a real gel, building competency and confidence
- Allow students to practice until they have the skills to load • small volumes of DNA samples onto an agarose gel
- Lab Techniques involved: Pipetting, Gel Loading

Major HKDSE-related chapters:

DNA fingerprinting 1.

M3003: PTC Genetics MiniLab

Mendelian inheritance of an observable trait

There is a 25% chance of this outcome given the parental genotype

Difficulty Level: $\bigstar \bigstar \bigstar \bigstar \bigstar$

Materials included:

- PTC test strips
- 6 DNA samples
- GreenGel Cups
- Running buffer
- Pipette tips
- Microcentrifuge tubes
- For students familiar with electrophoresis- expand their knowledge of genetic principles and Mendelian inheritance
- Develop a hypothesis about the genetic basis of observed phenotypic traits and run an experiment to test it
- Use a Punnett square to explain experimental results
- Construct a family tree to explain inheritance of a trait
- Lab Techniques involved: Pipetting, Gel Electrophoresis

- 1. Detecting the Environment
- 2. Mendelian Inheritance
- 3. Human Inheritance (Pedigree)
- 4. Recombinant DNA (Restriction enzyme)
- 5. DNA fingerprinting

M3004: DNA Fingerprinting MiniLab

Tracing ancestry with genetics

- Use DNA fingerprinting to help scientists determine the parentage of a humpback whale calf
- Challenge your pattern analysis skills to find the bands that must have been contributed by the father
- Apply logic and knowledge of mammalian genetics to infer a pattern of inheritance
- Lab Techniques involved: Pipetting, Gel Electrophoresis

Materials included:

- DNA samples from baby whale (Luna), mother, three potential fathers
- **GreenGel Cups**
- Running buffer
- Pipette tips
- Microcentrifuge tubes

Major HKDSE-related chapters:

- **Recombinant DNA (Restriction** 1. enzyme)
- DNA fingerprinting 2.

Electives:

1. PCR

M3005: CSI Forensics MiniLab

Who killed Dr. Ward?

- Students examine hair, fingerprints, and DNA to link one of the suspects with the crime scene
- Students must integrate multiple lines of evidence and apply logical reasoning to solve the crime
- Exercise culminates with hands-on electrophoresis experiment with DNA from crime scene, victim, and three suspects
- Lab Techniques involved: Pipetting, Gel Electrophoresis

Materials included:

- 6 DNA samples
- GreenGel Cups
- Running buffer
- Pipette tips
- Microcentrifuge tubes

Major HKDSE-related chapters:

1. DNA fingerprinting

M3006 : Foodborne Outbreak Investigation

Forensic science for public health investigation

Party- Goer	What did he/she eat?	Sick?	
1	Tortilla chips, guacamole, a burger, five layer bean dip, deviled eggs, coleslaw, and chicken tacos.	Yes	
2	Potato chips with French onion dip, tortilla chips with salsa, potato salad, a burger, and deviled eggs.		
3	Potato chips with buttermilk ranch, tortilla chips with salsa, a burger, five layer bean dip, garden salad with buttermilk ranch dressing, deviled eggs, and coleslaw.		
4	Potato chins with French onion din tortilla chins with	2	

- Based on a real-life Shigella outbreak from yr. 2000
- Includes a pencil and paper exercise and a studentdesigned gel electrophoresis experiment
- Use a cohort study and molecular assays to trace an outbreak to its source
- Demonstrate the need for positive and negative controls in molecular biology experiments
- Expose your students to career pathways in public health
- Lab Techniques involved: Pipetting, Gel **Electrophoresis**

Difficulty Level: $\bigstar \bigstar \bigstar \bigstar \bigstar$

Materials included:

- 11 DNA samples
- GreenGel Cups
- Running buffer
- Pipette tips
- Microcentrifuge tubes

Major HKDSE-related chapters:

- 1. Infectious Disease
- 2. Recominant DNA (Restriction enzyme)
- DNA fingerprinting 3.

Electives:

- Microorganisms 1.
- 2. PCR

M3007: Colorful Dye Electrophoresis

Visual introduction to STEM concepts

Start

End

Materials included:

Difficulty Level: $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$

- Nine color dye samples
- Agarose Gel Cups
- Running buffer
- Pipette tips
- Microcentrifuge tubes
- Students predict how dyes will migrate in an electric field based on their molecular weight and electric charge
- Learn foundational concepts from physics and chemistry: electric fields and voltage, properties of molecules, chemical basis of color
- Prepares students technically and conceptually for DNA electrophoresis experiments
- Lab Techniques involved: Pipetting, Gel Electrophoresis

Major HKDSE-related chapters:

1. DNA fingerprinting

<u>M3008 : NGSS-Aligned Color Dyes and Gel Electrophoresis</u> Comprehensive, inquiry-based MiniLabs follow the 5E lesson model

M3009: Candy Color Electrophoresis

Visual introduction to STEM concepts

Food Colorings

- Students prepare a colored extract from familiar candies, or food
- Cast, load, and run an agarose gel to analyze dye mixtures
- Interpret an electrophoresis gel using the concept that migration speed is determined by molar mass and electric charge
- Perform simple calculations on molar mass and electric charge
- Lab Techniques involved: Pipetting, Gel Electrophoresis

Materials included:

- Candies in six different colors
- Dye extraction buffer
- Dye extraction trays
- Agarose Gel Cups
- Running buffer
- Pipette tips
- Microcentrifuge tubes

Major HKDSE-related chapters:

DNA fingerprinting 1.

21

M3010 : Hunting the Inheritance of Huntington's Disease Understanding Mendelian genetics & constructing pedigree

- Study Mendelian genetics by using a real-life example of the inheritance of Huntington's Disease (an autosomal dominant genetic disease)
- Students form groups to construct a family pedigree and use the pedigree to observe disease patterns and make predictions about the inheritance of HD
- To develop an understanding of gel electrophoresis to confirm predictions & explain patterns observed using scientific data
- Extension activities: role play as genetic counselors, debate on genetic testing, construct a standard curve to find out the gene fragment sizes
- Lab Techniques involved: Pipetting, Gel Electrophoresis

Materials included:

- Pedigree Frame & name cards
- 5 DNA samples
- **GreenGel Cups** ٠
- Running buffer
- Pipette tips
- Microcentrifuge tubes

- **Carrier of Genetic** 1 information - DNA
- Mendelian Inheritance 2.
- Human Inheritance 3. (Pedigree)
- **DNA** fingerprinting 4.
- 5. PCR

M6001 : PCR 101 MiniLab Go viral with the lambda phage genome

Example results from PCR System validation kit Lane 1: MiniOne DNA marker (see page 34) Lane 2: PCR fragment 1 Lane 3: PCR fragment 2 Lane 4: PCR fragment 3 Lane 5: negative control

FastTaq PCR MasterMix
3 primer sets

- Lambda phage DNA
- Other reagents

Difficulty Level: $\bigstar \bigstar \bigstar \bigstar \bigstar$

Materials included:

- Running buffer
- GreenGel Cups
- Thin-walled PCR tubes

• Students will learn the molecular mechanisms of PCR & how gel electrophoresis is used to analyze PCR products

- Set up four PCR reactions with three primer sets and one negative control
- Predict the sizes of the PCR products from the genomic sequence and primer sequence
- Test the prediction by running an agarose gel
- Lab Techniques involved: Pipetting, Gel Electrophoresis

- 1. Recombinant DNA (Restriction enzyme)
- 2. DNA fingerprinting
- 3. PCR

M6005 : PCR Cycle Number Analysis The amazing of duplicating exponentially!

Materials included:

- FastTaq PCR MasterMix
- Primer set & reagents
- Lambda phage DNA
- Running buffer
- **GreenGel Cups**
- thin-walled PCR tubes

- Apply exponential math to understand how PCR produces billions of copies of a DNA fragment.
- How many PCR cycles does it take to see a band on the MiniOne agarose gel?
- Set up PCR reactions and remove the tubes after 10, 15, 20, 25 cycles and run on a gel to see when the band appears.
- Observe increase in fluorescent intensity of the band with increasing cycle number, while speed of migration stays the same, reinforcing basic electrophoresis concepts.

- **Recombinant DNA** 1. (Restriction enzyme)
- **DNA fingerprinting** 2.
- 3. PCR

M6010 : A Taste of Genetics PTC PCR Test your own DNA to find your PTC taster genotype Difficulty Level: $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$ 221 bp

- Introduction to genotyping and personal genetics for ٠ students who already have experience with PCR and electrophoresis
- Students taste the PTC paper to determine whether they are a taster or a non-taster
- Three-part lab over 3-4 days: DNA extraction, PCR amplification of PTC gene, restriction digest to determine genotype, gel electrophoresis
- Interpreting DNA bands amplified from their own genome is ٠ a great way to introduce real-world data interpretation into a biotech curriculum
- Lab²Techniques involved: Pipetting, DNA Extraction, PCR, • **Restriction Digest, Gel Electrophoresis**

Materials included:

- **PTC Test Trips**
- **DNA** extraction
- DNA amplification by PCR
- **Restriction Enzyme**
- Running buffer
- **GreenGel Cups**
- Thin-walled PCR tubes

- 1. Detecting the Environment
- Carrier of Genetic information -2. DNA
- 3. Mendelian Inheritence
- Human Inheritence (Pedigree) 4.
- 5. From DNA to Proteins
- 6. **Mutations**
- **Recominant DNA (Restriction** 7. enzyme)
- **DNA** fingerprinting 8.
- 9. PCR

M6050/53 : Restriction Digest of DNA

See the power of molecular scissors!

	M6050	M6053
MiniLab	Restriction Digest Basics	Restriction Analysis of DNA
Students set up restriction digest?	No (pre-digested samples are provided)	Yes (Set up single and double restriction digests)
Students run gel?	Yes	Yes
Number of days	1	2
Difficulty	General Bio	General Bio or Honors
Inquiry level	*	**
Description of activities	 Predict fragment sizes from map test prediction by running pre-digested fragments 	 Find digest sites and predict fragment sizes from DNA sequence Set up restriction digests Run digests to test prediction

Junior Levels (S1 - S3)

Simple MiniLabs that can let junior level students to have an experience on DNA fingerprinting without requiring much prior knowledge:

Basic Labs for S1 to S3:

- M3002 Gel Loading Practice
- M3007 Colorful Dye Electrophoresis
- M3009 Candy Color Electrophoresis
- M3008 NGSS-Aligned Color Dyes & Gel Electrophoresis

Advance Labs for S1 to S3:

- M3001 Gel Electrophoresis 101
- M3004 DNA Fingerprinting
- M3005 CSI Forensics

HKDSE Syllabus:

- DNA Fingerprinting
- Recombinant DNA
- PCR
- DNA Fingerprinting

Senior Levels (S4 - S6)

Advanced MiniLabs require more prior knowledge and are ideal for senior level students:

Basic Labs for S4 to S5:

- M3004 DNA Fingerprinting
- M3005 CSI Forensics
- M3001 Gel Electrophoresis 101
- M3003 PTC Genetics
- M6050 Restriction Digest Basics
- M3006 Foodborne Outbreak Investigation
- M3010 Hunting the Inheritance of Huntington's Disease
- M3011 Determining the Genetics of a Ca\$H Cow

HKDSE Syllabus:

- Detecting the environment
- Infectious Disease
- Basic Genetics (Mendelian Inheritance)
- Molecular Genetics (Mutations)
- Biotechnology (DNA Fingerprinting)
- 28 Biotechnology (DNA fingerprinting)

Advance Labs for S4 to S6:

- M6001 PCR 101 and Gel Electrophoresis
- M6010 A Taste of Genetics
- M6005 PCR Cycle Numbeer Analysis
- M6053 Restriction Analysis of DNA
- M6010 A Taste of Genetics PTC PCR
- M6020 Mad Cow Disease (Bovine Spongiform Encephalopathy, BSE) by PCR

